### Concrete Pavement Repair

Steve Waalkes, P.E.
Director of Engineering & Rehabilitation

American Concrete Pavement Association



### **Basis of Information**

- UFC 3-270-04
- ACPA JP002P

Concrete Pavement Repair Manual

Full-Depth Repair
Partial-Depth Repair
Slabjacking
Subsealing
Diamond Grinding
Load Transfer Restoration
Polymer Concrete
Retrofit Edge Drains
Heat-Resistant Concrete



American Concrete
Pavement Association

## **Topics Covered**

- Distresses
- Repair/restoration
  - Partial-depth repair
  - Full-depth repair
- Surface issues
  - Diamond grinding / grooving



### **Distress Classification**

#### Cracking

- Extends through the depth of a slab
- Caused by:
  - Poor Design Long joint spacing
  - Poor Construction (Over Finished Surfaces)
  - Curling / warping (Stabilized bases)
  - Base / edge / dowel restraint
  - Load

## Transverse Cracking



## **Longitudinal Cracking**





## Corner Breaks



#### **Cracks and Causes**

- Full Width of Panel (Slab)
  - Environmental Distress
  - Sealing (Routing) Most Effective
- Corner Cracks (Diagonal)
  - Load Distress
  - Full Depth Replacement Mandatory
- Shattered Slabs More than Four Pieces
  - Full Depth Replacement Required

#### Rules for Concrete Cracks

• to 1/4-inch

• 1/4 to 1/2-inch

• 3/8 to 3/4-inch (S)

• 3/4 to 1-1/2

• 3/4 to 1-1/2 (S)

More than 1-1/2

Leave alone

Route and Seal

Partial Depth Repair

Rout and Seal

Full Depth Patching

Full Depth Patching

### **Distress Classification**

#### Spalling

- Breaking, cracking, or chipping at joints or cracks
  - Incompressible in Joint / Crack
  - Material Durability Problems
  - Poor Construction Techniques
- Full Depth Repair Required when unsound material deeper than 1/3 thickness

# Spalling



### **Distress Classification**

#### Faulting

- Breaking, cracking, or chipping at joints or cracks
  - Incompressible in Joint / Crack
  - Material Durability Problems
  - Poor Construction Techniques
- Full Depth Repair Required when unsound material deeper than 1/3 thickness

# Faulting



# Faulting



## Why Repair?

- First level of response for deteriorating concrete pavements should always be repair
  - Least cost
  - Best return on investment
  - Least service disruption

## Purpose of Repair Techniques

- Repair particular distress
- Prevent recurrence of distress
- Improve pavement capacity
  - Structure
  - Traffic
  - Ride

### Repair Techniques

- Slab Stabilization
- Partial-Depth Patching
- Full-Depth Patching
- Dowel Bar Retrofit (Load Transfer Restoration)
- Diamond Grinding
- Resealing Joints & Cracks
- Cross-stitching long. cracks/joints

## Partial Depth Repair



## Partial Depth Repair









## Compressible Insert



### Joint Insert

- Separates patch from adjacent lane
- Reforms joint reservoir
- Provides uniform sealing reservoir
- Acceptable materials:
  - Styrofoam
  - Asphalt-impregnated fiberboard
  - Fiberboard

### If Insert Not Used...







## Keys to Partial Depth Repair

- Patch material is durable
  - freeze-thaw
- Patch area is clean
  - sandblast + air blast
- Backfill mixed in small quantities
  - follow manufacturer's instructions
- Re-form joint across slot
  - prevent point bearing

## Full Depth Repair



## Full Depth Repair



### Full Depth Repairs

- Minimum repair 2 feet
- Full depth cut at joints
- Diamond blades
- Tie to existing













# Gang Drill Dowel Holes (slab surface reference)



# Gang Drill (base reference)



Gang Drill (boom reference)



### Cleaning Holes (Air Blast)



## Dowel Bar Placement for Full Depth Repairs













### Keys to Full Depth Repair

- Accurate layout / estimate of quantities
- Re-establish load transfer
  - drill & grout dowels on both sides
- Strike-off level with surrounding pavement
- Good mix design & curing regimen

### **Diamond Grinding**

- Removes roughness
- Removes polished concrete surface
- Removes rubber build-up



### **Diamond Grinding**





























### Bump Removal



## Night Grinding Restoration Work



# Safety Grooving for Runways

- First used by British in 1956 to improve friction characteristics of wet runways
- NASA begins runway grooving research in 1962
- Adopted as a standard technique used to improve runway characteristics in 1967

# Safety Grooving for Runways

- First commercial use at Washington National Airport in 1967 – transverse grooves sawed into bituminous surface, .625" X .625" X 1"
- First commercial use on a PCC runway at Kansas City International Airport in 1968, .25" X .25" X 1.25"

# Safety Grooving for Runways

- Standardized by FAA in 1978 via Advisory Circular
- Grooves sawed transverse to runway
- .25" X .25" X 1.5"
- AKA Deep Groove Concept
- Most major airports in the US contain at least one grooved runway







## Re-Grooving Pavement Surfaces

- New grooves must match depth, width and spacing of original grooves
- A skilled operator and properly set equipment are essential for accurate groove tie-in
- Re-grooving takes more time and patience than virgin grooving









### Keys to Diamond Grinding

- Understand pavement conditions
  - roughness, aggregate type, concrete strength
- Grinding head setup
  - blade type & spacing related to aggregate hardness, roughness, etc.
- Correct blade spacing improves:
  - reduction in hydroplaning
  - longevity of surface

#### Summary

- Proper techniques are available to repair & maintain pavements
- The techniques are used to correct pavement distresses and prevent their occurrence, not cover them up
- Concrete overlays can help solve problems with asphalt pavements and prevent the "mill & fill" scenario



Concrete Rehabilitation Procedures Serve Facilities for All Types of Traffic

#### For more information...

www.pavement.com or swaalkes@pavement.com



ANY QUESTIONS?